Bacterial coexistence driven by motility and spatial competition
Sebastian Gude et al. | Nature 578, 588-592 (2020) | pdf & DOI
Processive extrusion of polypeptide loops by a Hsp100 disaggregase
Mario Avellaneda et al. | Nature 578, 317-320 (2020) | pdf & DOI
Alternative modes of client binding enable functional plasticity of Hsp70
Alireza Mashaghi et al. | Nature 539, 448-451 (2016) | pdf & DOI: 10.1038/nature20137
Stochasticity of metabolism and growth at the single-cell level
Daniel J. Kiviet et al. | Nature 514, 376-379 (2014) | pdf & DOI: 10.1038/nature13582
Reshaping of the conformational search of a protein by the chaperone trigger factor
Alireza Mashaghi et al. | Nature 500, 98-101 (2013) | pdf & DOI: 10.1038/nature12293
Tradeoffs and optimality in the evolution of gene regulation
Frank J. Poelwijk et al. | Cell 146, 462-470 (2011) | pdf & DOI:10.1016/j.cell.2011.06.035
Direct Observation of Chaperone-Induced Changes in a Protein Folding Pathway
Philipp Bechtluft, Ruud van Leeuwen et al. | Science 318:1458-1461 (2007) | pdf & DOI:10.1126/science.1144972
Empirical fitness landscapes reveal accessible evolutionary paths
Frank Poelwijk, Daan Kiviet et al. | Nature 445:383-386 (2007) | pdf & DOI:10.1038/nature05451
The bacteriophage phi29 portal motor can package DNA against a large internal force
Douglas E. Smith, Sander J. Tans et al. | Nature 413:748-52 (2001) | pdf & DOI:10.1038/35099581
Molecular transistors: Potential modulations along carbon nanotubes
Sander J. Tans, Cees Dekker. | Nature 404:834-35 (2000) | pdf & DOI:10.1038/35009026
Imaging electron wave functions of quantized energy levels in carbon nanotubes
Liesbeth C. Venema et al. | Science 283:52-55 (1999) | pdf & DOI:10.1126/science.283.5398.52
Electron-electron correlations in carbon nanotubes
Sander J. Tans et al. | Nature 394:761-64 (1998) | pdf & DOI:10.1038/29494
Room-temperature transistor based on a single carbon nanotube
Sander J. Tans, Alwin R. M. Verschueren & Cees Dekker | Nature 393:49-52 (1998) | pdf & DOI:10.1038/29954
Individual single-wall carbon nanotubes as quantum wires
Sander J. Tans et al. | Nature 386:474-77 (1997) | pdf & DOI:10.1038/386474a0
Fullerene 'crop circles'
Jie Liu et al. | Nature 385, 780-781 (1997) | pdf & DOI:10.1038/385780b0

Topology of polymer chains under nanoscale confinement

Satarifard, V.; Heidari, M.; Mashaghi, S.; Tans, S. J.; Ejtehadi, M. R.; Mashaghi, A.
Spatial confinement limits the conformational space accessible to biomolecules but the implications for bimolecular topology are not yet known. Folded linear biopolymers can be seen as molecular circuits formed by intramolecular contacts. The pairwise arrangement of intra-chain contacts can be categorized as parallel, series or cross, and has been identified as a topological property. Using molecular dynamics simulations, we determine the contact order distributions and topological circuits of short semi-flexible linear and ring polymer chains with a persistence length of lp under a spherical confinement of radius Rc. At low values of lp/Rc, the entropy of the linear chain leads to the formation of independent contacts along the chain and accordingly, increases the fraction of series topology with respect to other topologies. However, at high lp/Rc, the fraction of cross and parallel topologies are enhanced in the chain topological circuits with cross becoming predominant. At an intermediate confining regime, we identify a critical value of lp/Rc, at which all topological states have equal probability. Confinement thus equalizes the probability of more complex cross and parallel topologies to the level of the more simple, non-cooperative series topology. Moreover, our topology analysis reveals distinct behaviours for ring- and linear polymers under weak confinement; however, we find no difference between ring- and linear polymers under strong confinement. Under weak confinement, ring polymers adopt parallel and series topologies with equal likelihood, while linear polymers show a higher tendency for series arrangement. The radial distribution analysis of the topology reveals a non-uniform effect of confinement on the topology of polymer chains, thereby imposing more pronounced effects on the core region than on the confinement surface. Additionally, our results reveal that over a wide range of confining radii, loops arranged in parallel and cross topologies have nearly the same contact orders. Such degeneracy implies that the kinetics and transition rates between the topological states cannot be solely explained by contact order. We expect these findings to be of general importance in understanding chaperone assisted protein folding, chromosome architecture, and the evolution of molecular folds.
Type of Publication:
[DOI:\href{}{10.1039/c7nr04220e}] [PubMed:\href{}{28805849}]
Hits: 437