KEY PUBLICATIONS

Bacterial coexistence driven by motility and spatial competition
Sebastian Gude et al. | Nature 578, 588-592 (2020) | pdf & DOI
Processive extrusion of polypeptide loops by a Hsp100 disaggregase
Mario Avellaneda et al. | Nature 578, 317-320 (2020) | pdf & DOI
Alternative modes of client binding enable functional plasticity of Hsp70
Alireza Mashaghi et al. | Nature 539, 448-451 (2016) | pdf & DOI: 10.1038/nature20137
Stochasticity of metabolism and growth at the single-cell level
Daniel J. Kiviet et al. | Nature 514, 376-379 (2014) | pdf & DOI: 10.1038/nature13582
Reshaping of the conformational search of a protein by the chaperone trigger factor
Alireza Mashaghi et al. | Nature 500, 98-101 (2013) | pdf & DOI: 10.1038/nature12293
Tradeoffs and optimality in the evolution of gene regulation
Frank J. Poelwijk et al. | Cell 146, 462-470 (2011) | pdf & DOI:10.1016/j.cell.2011.06.035
Direct Observation of Chaperone-Induced Changes in a Protein Folding Pathway
Philipp Bechtluft, Ruud van Leeuwen et al. | Science 318:1458-1461 (2007) | pdf & DOI:10.1126/science.1144972
Empirical fitness landscapes reveal accessible evolutionary paths
Frank Poelwijk, Daan Kiviet et al. | Nature 445:383-386 (2007) | pdf & DOI:10.1038/nature05451
The bacteriophage phi29 portal motor can package DNA against a large internal force
Douglas E. Smith, Sander J. Tans et al. | Nature 413:748-52 (2001) | pdf & DOI:10.1038/35099581
Molecular transistors: Potential modulations along carbon nanotubes
Sander J. Tans, Cees Dekker. | Nature 404:834-35 (2000) | pdf & DOI:10.1038/35009026
Imaging electron wave functions of quantized energy levels in carbon nanotubes
Liesbeth C. Venema et al. | Science 283:52-55 (1999) | pdf & DOI:10.1126/science.283.5398.52
Electron-electron correlations in carbon nanotubes
Sander J. Tans et al. | Nature 394:761-64 (1998) | pdf & DOI:10.1038/29494
Room-temperature transistor based on a single carbon nanotube
Sander J. Tans, Alwin R. M. Verschueren & Cees Dekker | Nature 393:49-52 (1998) | pdf & DOI:10.1038/29954
Individual single-wall carbon nanotubes as quantum wires
Sander J. Tans et al. | Nature 386:474-77 (1997) | pdf & DOI:10.1038/386474a0
Fullerene 'crop circles'
Jie Liu et al. | Nature 385, 780-781 (1997) | pdf & DOI:10.1038/385780b0

Circuit topology of self-interacting chains: implications for folding and unfolding dynamics

Mugler, A.; Tans, S. J.; Mashaghi, A.
Abstract:
Understanding the relationship between molecular structure and folding is a central problem in disciplines ranging from biology to polymer physics and DNA origami. Topology can be a powerful tool to address this question. For a folded linear chain, the arrangement of intra-chain contacts is a topological property because rearranging the contacts requires discontinuous deformations. Conversely, the topology is preserved when continuously stretching the chain while maintaining the contact arrangement. Here we investigate how the folding and unfolding of linear chains with binary contacts is guided by the topology of contact arrangements. We formalize the topology by describing the relations between any two contacts in the structure, which for a linear chain can either be in parallel, in series, or crossing each other. We show that even when other determinants of folding rate such as contact order and size are kept constant, this 'circuit' topology determines folding kinetics. In particular, we find that the folding rate increases with the fractions of parallel and crossed relations. Moreover, we show how circuit topology constrains the conformational phase space explored during folding and unfolding: the number of forbidden unfolding transitions is found to increase with the fraction of parallel relations and to decrease with the fraction of series relations. Finally, we find that circuit topology influences whether distinct intermediate states are present, with crossed contacts being the key factor. The approach presented here can be more generally applied to questions on molecular dynamics, evolutionary biology, molecular engineering, and single-molecule biophysics.
Year:
2014
Type of Publication:
Article
Journal:
Phys Chem Chem Phys
Volume:
16
Number:
41
Pages:
22537-22544
Month:
November
Note:
[DOI:\href{https://dx.doi.org/10.1039/c4cp03402c}{10.1039/c4cp03402c}] [PubMed:\href{https://www.ncbi.nlm.nih.gov/pubmed/25228051}{25228051}]
Hits: 380