KEY PUBLICATIONS

Alternative modes of client binding enable functional plasticity of Hsp70
Alireza Mashaghi et al. | Nature 539, 448-451 (2016) | pdf & DOI: 10.1038/nature20137
Stochasticity of metabolism and growth at the single-cell level
Daniel J. Kiviet et al. | Nature 514, 376-379 (2014) | pdf & DOI: 10.1038/nature13582
Reshaping of the conformational search of a protein by the chaperone trigger factor
Alireza Mashaghi et al. | Nature 500, 98-101 (2013) | pdf & DOI: 10.1038/nature12293
Tradeoffs and optimality in the evolution of gene regulation
Frank J. Poelwijk et al. | Cell 146, 462-470 (2011) | pdf & DOI:10.1016/j.cell.2011.06.035
Direct Observation of Chaperone-Induced Changes in a Protein Folding Pathway
Philipp Bechtluft, Ruud van Leeuwen et al. | Science 318:1458-1461 (2007) | pdf & DOI:10.1126/science.1144972
Empirical fitness landscapes reveal accessible evolutionary paths
Frank Poelwijk, Daan Kiviet et al. | Nature 445:383-386 (2007) | pdf & DOI:10.1038/nature05451
The bacteriophage phi29 portal motor can package DNA against a large internal force
Douglas E. Smith, Sander J. Tans et al. | Nature 413:748-52 (2001) | pdf & DOI:10.1038/35099581
Molecular transistors: Potential modulations along carbon nanotubes
Sander J. Tans, Cees Dekker. | Nature 404:834-35 (2000) | pdf & DOI:10.1038/35009026
Imaging electron wave functions of quantized energy levels in carbon nanotubes
Liesbeth C. Venema et al. | Science 283:52-55 (1999) | pdf & DOI:10.1126/science.283.5398.52
Electron-electron correlations in carbon nanotubes
Sander J. Tans et al. | Nature 394:761-64 (1998) | pdf & DOI:10.1038/29494
Room-temperature transistor based on a single carbon nanotube
Sander J. Tans, Alwin R. M. Verschueren & Cees Dekker | Nature 393:49-52 (1998) | pdf & DOI:10.1038/29954
Individual single-wall carbon nanotubes as quantum wires
Sander J. Tans et al. | Nature 386:474-77 (1997) | pdf & DOI:10.1038/386474a0
Fullerene 'crop circles'
Jie Liu et al. | Nature 385, 780-781 (1997) | pdf & DOI:10.1038/385780b0

Stochasticity and homeostasis in the E. coli replication and division cycle

Adiciptaningrum, A.; Osella, M.; Moolman, M. C.; Lagomarsino, M. Cosentino; Tans, S. J.
Abstract:
How cells correct for stochasticity to coordinate the chromosome replication and cellular division cycle is poorly understood. We used time-lapse microscopy and fluorescently labelled SeqA to determine the timing of birth, initiation, termination, and division, as well as cell size throughout the cell cycle. We found that the time between birth and initiation (B-period) compensates for stochastic variability in birth size and growth rate. The time between termination and division (D-period) also compensates for size and growth variability, invalidating the notion that replication initiation is the principal trigger for cell division. In contrast, the time between initiation and termination (C-period) did not display such compensations. Interestingly, the C-period did show small but systematic decreases for cells that spontaneously grew faster, which suggests a coupling between metabolic fluctuations and replication. An auto-regressive theoretical framework was employed to compare different possible models of sub-period control.
Year:
2015
Type of Publication:
Article
Journal:
Sci Rep
Volume:
5
Pages:
18261
Month:
December
Note:
[PubMed Central:\href{https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4680914}{PMC4680914}] [DOI:\href{https://dx.doi.org/10.1038/srep18261}{10.1038/srep18261}] [PubMed:\href{https://www.ncbi.nlm.nih.gov/pubmed/26671779}{26671779}]
Hits: 255