Bacterial coexistence driven by motility and spatial competition
Sebastian Gude et al. | Nature 578, 588-592 (2020) | pdf & DOI
Processive extrusion of polypeptide loops by a Hsp100 disaggregase
Mario Avellaneda et al. | Nature 578, 317-320 (2020) | pdf & DOI
Alternative modes of client binding enable functional plasticity of Hsp70
Alireza Mashaghi et al. | Nature 539, 448-451 (2016) | pdf & DOI: 10.1038/nature20137
Stochasticity of metabolism and growth at the single-cell level
Daniel J. Kiviet et al. | Nature 514, 376-379 (2014) | pdf & DOI: 10.1038/nature13582
Reshaping of the conformational search of a protein by the chaperone trigger factor
Alireza Mashaghi et al. | Nature 500, 98-101 (2013) | pdf & DOI: 10.1038/nature12293
Tradeoffs and optimality in the evolution of gene regulation
Frank J. Poelwijk et al. | Cell 146, 462-470 (2011) | pdf & DOI:10.1016/j.cell.2011.06.035
Direct Observation of Chaperone-Induced Changes in a Protein Folding Pathway
Philipp Bechtluft, Ruud van Leeuwen et al. | Science 318:1458-1461 (2007) | pdf & DOI:10.1126/science.1144972
Empirical fitness landscapes reveal accessible evolutionary paths
Frank Poelwijk, Daan Kiviet et al. | Nature 445:383-386 (2007) | pdf & DOI:10.1038/nature05451
The bacteriophage phi29 portal motor can package DNA against a large internal force
Douglas E. Smith, Sander J. Tans et al. | Nature 413:748-52 (2001) | pdf & DOI:10.1038/35099581
Molecular transistors: Potential modulations along carbon nanotubes
Sander J. Tans, Cees Dekker. | Nature 404:834-35 (2000) | pdf & DOI:10.1038/35009026
Imaging electron wave functions of quantized energy levels in carbon nanotubes
Liesbeth C. Venema et al. | Science 283:52-55 (1999) | pdf & DOI:10.1126/science.283.5398.52
Electron-electron correlations in carbon nanotubes
Sander J. Tans et al. | Nature 394:761-64 (1998) | pdf & DOI:10.1038/29494
Room-temperature transistor based on a single carbon nanotube
Sander J. Tans, Alwin R. M. Verschueren & Cees Dekker | Nature 393:49-52 (1998) | pdf & DOI:10.1038/29954
Individual single-wall carbon nanotubes as quantum wires
Sander J. Tans et al. | Nature 386:474-77 (1997) | pdf & DOI:10.1038/386474a0
Fullerene 'crop circles'
Jie Liu et al. | Nature 385, 780-781 (1997) | pdf & DOI:10.1038/385780b0

Alternative modes of client binding enable functional plasticity of Hsp70

Mashaghi, A.; Bezrukavnikov, S.; Minde, D. P.; Wentink, A. S.; Kityk, R.; Zachmann-Brand, B.; Mayer, M. P.; Kramer, G.; Bukau, B.; Tans, S. J.
The Hsp70 system is a central hub of chaperone activity in all domains of life. Hsp70 performs a plethora of tasks, including folding assistance, protection against aggregation, protein trafficking, and enzyme activity regulation, and interacts with non-folded chains, as well as near-native, misfolded, and aggregated proteins. Hsp70 is thought to achieve its many physiological roles by binding peptide segments that extend from these different protein conformers within a groove that can be covered by an ATP-driven helical lid. However, it has been difficult to test directly how Hsp70 interacts with protein substrates in different stages of folding and how it affects their structure. Moreover, recent indications of diverse lid conformations in Hsp70-substrate complexes raise the possibility of additional interaction mechanisms. Addressing these issues is technically challenging, given the conformational dynamics of both chaperone and client, the transient nature of their interaction, and the involvement of co-chaperones and the ATP hydrolysis cycle. Here, using optical tweezers, we show that the bacterial Hsp70 homologue (DnaK) binds and stabilizes not only extended peptide segments, but also partially folded and near-native protein structures. The Hsp70 lid and groove act synergistically when stabilizing folded structures: stabilization is abolished when the lid is truncated and less efficient when the groove is mutated. The diversity of binding modes has important consequences: Hsp70 can both stabilize and destabilize folded structures, in a nucleotide-regulated manner; like Hsp90 and GroEL, Hsp70 can affect the late stages of protein folding; and Hsp70 can suppress aggregation by protecting partially folded structures as well as unfolded protein chains. Overall, these findings in the DnaK system indicate an extension of the Hsp70 canonical model that potentially affects a wide range of physiological roles of the Hsp70 system.
Type of Publication:
[DOI:\href{}{10.1038/nature20137}] [PubMed:\href{}{27783598}]
Hits: 455